Dear Author,

Attached please find a gratis pdf file of your article/note published in Herpetological Review. You are receiving this pdf at no charge as a benefit of SSAR membership, and it is for your personal use only (see copyright notice below).

Sincerely,

SSAR Publications Office

Notice warning concerning copyright restrictions: The copyright law of the United States (title 17, United States Code) governs the making of copies or other reproductions of copyrighted material such as PDFs. One of these specific conditions is that the copy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes, or later uses, a PDF, copy, or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. The Society for the Study of Amphibians and Reptiles (SSAR) holds the copyright to this PDF. SSAR authorizes the author to use this PDF to fill reprint requests for private study, scholarship and research purposes. It is a violation of SSAR's copyright to distribute this PDF via mass emails, or by posting this pdf on any website for download — Except the author's own personal (not business) website / webpage.
of transects and trails, and interviewed more than 53 local island inhabitants to gain insight into reproduction of this critically endangered species (Knapp 2007. Iguana 14:223–225; Powell and Henderson 2005. Iguana 12:62–77). Notwithstanding considerable effort, we only documented six nest sites in use (Table 1). The largest (and only entirely natural) nest site was found was a barren patch of about 5 × 12 m on a ridge between two densely forested gullies on the lower southern flank of the Quill. The area was bare, well-drained, with mulch gravel and sand, and had nine holes in all. A dry shell of a successfully hatched egg was found at the site. Overgrowth with shading, higher humidity, and soil compaction were the main threats to the remaining (semi-natural) sites, whereas domestic predators were the main threat to nests deposited in local estate gardens (Table 1). Iguanas were even found to make use of small and narrow forest clearings as long as these were oriented favorably with respect to the sun. Other animals that commonly dig burrows on St. Eustatius include the lizard Ameiva erythrocephala and land crab Gecarcinus ruricola. These species dig burrows largely for shelter and consequently select moister and more shaded sites. Their burrows also differ importantly in shape and size from iguana nest-related digging. Measurements of four entrances of iguana nesting cavities were as follows (heights/width in cm): site 3: 13/18, 14/15; site 4: 10/14, 14/15; site 4: 10/14, 14/15. I. delicatissima is known for its protracted nesting season but for St. Eustatius this was unknown. Our results show that on St. Eustatius nesting occurs minimally from November through January. Two natural nest sites documented for the period January–August 2008 by Nicole Esteban (with egg shells seen) on the wind-swept ridges of Gilboa Hill, were visited (by AOD and a National Parks intern) on 26 Nov 2012. Two hours of intensive searching of the area by two persons yielded no signs of any iguana nest-digging activity. Historical anecdotes that “formerly the people swam with iguanas at Venus Bay” suggested that this site was an important iguana locality at one time. However, a field visit to Venus Bay on 24 November 2012 did not yield evidence of any nesting activity. On several islands, female iguanas are forced to migrate (often) long distances to coastal beaches for nesting due to lack of suitable sites elsewhere (Bock and Mc- Cracken 1988. J. Herpetol. 22:316–322; Breull 2002. Patrim. Nat. 54:1–339). Our results and observations suggest likewise that on St. Eustatius, the interaction of vegetation and geology also limit nest site availability to the iguana. Our results further indicate that the sites presently used are vulnerable to humans and their non-native pets, livestock, and invasive weeds (particularly the Mexican Creeper Vine, Antigonon leptopus). Mapping, artificial creation and adequate protection of nest sites are recommended as key necessities for recovery of this endangered species on St. Eustatius.

This work was made possible by IMARES Wageningen UR, the Island Government of St. Eustatius, STENAPA and the Dutch Ministry of Economic Affairs, Agriculture and Innovation (project #4308701004, A. O. Debrot, PI). Our special thanks go to Roberto Hensen and Inge Jaspers for their unlimited hospitality.

LEIOLEPIS GUTTATA (Spotted Butterfly Lizard). REPRODUCT.ION. Leiolepis guttata is currently known from only Vietnam (Van Sang et al. 2009. Herpetofauna of Vietnam. Edition Chimaira, Frankfurt am Main. 768 pp.). In this note we report the first information on reproduction in L. guttata.

One female (SVL = 116 mm) collected at Bin Chau (105.83°N, 10.85°E), Bà Rịa-Vũng Tàu Province, Vietnam, in June 2009 and deposited in the herpetology collection of La Sierra University (LSUHC), Riverside, California (as LSUHC 9239) was examined.

A cut was made in the lower abdominal cavity and the ovaries were examined. A total of three oviducal eggs were present, two in the left oviduct and one in the right oviduct. This is the first egg clutch reported for L. guttata.

LEIOLEPIS GUTTATA (Spotted Butterfly Lizard). REPRODUCT.ION. Leiolepis guttata is currently known from only Vietnam (Van Sang et al. 2009. Herpetofauna of Vietnam. Edition Chimaira, Frankfurt am Main. 768 pp.). In this note we report the first information on reproduction in L. guttata.

One female (SVL = 116 mm) collected at Bin Chau (105.83°N, 10.85°E), Bà Rịa-Vũng Tàu Province, Vietnam, in June 2009 and deposited in the herpetology collection of La Sierra University (LSUHC), Riverside, California (as LSUHC 9239) was examined.

A cut was made in the lower abdominal cavity and the ovaries were examined. A total of three oviducal eggs were present, two in the left oviduct and one in the right oviduct. This is the first egg clutch reported for L. guttata.

LEIOLEPIS GUTTATA (Spotted Butterfly Lizard). REPRODUCT.ION. Leiolepis guttata is currently known from only Vietnam (Van Sang et al. 2009. Herpetofauna of Vietnam. Edition Chimaira, Frankfurt am Main. 768 pp.). In this note we report the first information on reproduction in L. guttata.

One female (SVL = 116 mm) collected at Bin Chau (105.83°N, 10.85°E), Bà Rịa-Vũng Tàu Province, Vietnam, in June 2009 and deposited in the herpetology collection of La Sierra University (LSUHC), Riverside, California (as LSUHC 9239) was examined.

A cut was made in the lower abdominal cavity and the ovaries were examined. A total of three oviducal eggs were present, two in the left oviduct and one in the right oviduct. This is the first egg clutch reported for L. guttata.

LEIOLEPIS GUTTATA (Spotted Butterfly Lizard). REPRODUCT.ION. Leiolepis guttata is currently known from only Vietnam (Van Sang et al. 2009. Herpetofauna of Vietnam. Edition Chimaira, Frankfurt am Main. 768 pp.). In this note we report the first information on reproduction in L. guttata.

One female (SVL = 116 mm) collected at Bin Chau (105.83°N, 10.85°E), Bà Rịa-Vũng Tàu Province, Vietnam, in June 2009 and deposited in the herpetology collection of La Sierra University (LSUHC), Riverside, California (as LSUHC 9239) was examined.

A cut was made in the lower abdominal cavity and the ovaries were examined. A total of three oviducal eggs were present, two in the left oviduct and one in the right oviduct. This is the first egg clutch reported for L. guttata.

LEIOLEPIS GUTTATA (Spotted Butterfly Lizard). REPRODUCT.ION. Leiolepis guttata is currently known from only Vietnam (Van Sang et al. 2009. Herpetofauna of Vietnam. Edition Chimaira, Frankfurt am Main. 768 pp.). In this note we report the first information on reproduction in L. guttata.

One female (SVL = 116 mm) collected at Bin Chau (105.83°N, 10.85°E), Bà Rịa-Vũng Tàu Province, Vietnam, in June 2009 and deposited in the herpetology collection of La Sierra University (LSUHC), Riverside, California (as LSUHC 9239) was examined.

A cut was made in the lower abdominal cavity and the ovaries were examined. A total of three oviducal eggs were present, two in the left oviduct and one in the right oviduct. This is the first egg clutch reported for L. guttata.

LEIOLEPIS GUTTATA (Spotted Butterfly Lizard). REPRODUCT.ION. Leiolepis guttata is currently known from only Vietnam (Van Sang et al. 2009. Herpetofauna of Vietnam. Edition Chimaira, Frankfurt am Main. 768 pp.). In this note we report the first information on reproduction in L. guttata.

One female (SVL = 116 mm) collected at Bin Chau (105.83°N, 10.85°E), Bà Rịa-Vũng Tàu Province, Vietnam, in June 2009 and deposited in the herpetology collection of La Sierra University (LSUHC), Riverside, California (as LSUHC 9239) was examined.

A cut was made in the lower abdominal cavity and the ovaries were examined. A total of three oviducal eggs were present, two in the left oviduct and one in the right oviduct. This is the first egg clutch reported for L. guttata.
in the Andes of central Chile (33.35°S, 70.333°W; 50 km E of Santiago), more than 83% of food items during summer were plant material (Bozinovic et al. 1990. Physiol. Zool. 63:1216–1231). The rest of the food items were insects. Silva (2005. Rev. Chil. Hist. Nat. 78:589–599) reviewed dietary information for 25 species of small mammals inhabiting Chile and published in 11 scientific articles; there were no records of consumption of non-insect animal matter by *A. andinus*. To the best of our knowledge there are no reports of *A. andinus* preying on or consuming any animal species other than insects (e.g., lizards). Here we report a case of *A. andinus* chasing, killing, and consuming part of a male individual of the lizard *Liolaemus bellii* (Figs. 1–2). The observation by ES-B took place near El Colorado, Chile (33.233°S, 70.266°W) on 12 January 2012 at 1600 h when an *A. andinus* chased the lizard for 7–8 minutes in a semi-open area (sandy, gravelly soil with stones, rocks, and boulders of many sizes, and shrub vegetation). The mouse chased the lizard and bit its tail and dorsum several times; the reptile offered some resistance to the attack, fighting back on numerous occasions and trying to bite the mouse (Fig. 1). After struggling for a few minutes and in an obvious attempt to escape, the lizard ran underneath a large rock, but remained visible. The mouse followed it and then held onto it with its mouth. The mouse continued to bite the lizard's dorsum, flipped it upside down, and then bit its throat and abdomen several times. At one point, the lizard escaped the grasp of the mouse and ran some 10–15 cm (still under the rock and visible), but suddenly stopped; it looked exhausted, its eyes were sunken, and it had injuries on the head and body (i.e., dorsum, limbs, abdomen, and tail). Then, the mouse approached the lizard, bit it and flipped it on its back, and began to bite the left side of the abdomen, close to the hind limb. The lizard fought back again several times, but the mouse bit it in various locations on the dorsum, flipped it over again, and continued biting the abdomen and consuming parts of the lizard (Fig. 2). The mouse was aware of ES-B's presence; several times it moved toward him or stared at him, at certain times even as it continued biting the lizard.

This observation took place while we were conducting studies on the behavioral ecology of the lizards at our study site near El Colorado. Our studies required exhaustive visual searches for the 3 lizard species of the genus *Liolaemus* (*L. leopoldinus*, *L. bellii*, and *L. nigroviridis*) found at the study site. The area around El Colorado is characterized by rocky outcrops, open expanses where *Berberis empetrifolia* and *Chaquiraga oppositifolia* are the predominant plant species, and shrubby slopes. We were not studying *A. andinus* nor its diet, thus we did not catch individuals nor analyze their feces. Although previous studies have not listed non-insect animal matter in the diet of *A. andinus*, we suggest that feeding on a lizard may be nutritionally adaptive (Reichman 1977. Ecology 58:454–457). Primary production is probably low in the area where we made this feeding observation. Thus, ingesting an item high in protein might be beneficial, considering nutritional constraints as part of optimal foraging theory (Pulliam 1975. Am. Nat. 109:765–768). This photographic record contributes to the knowledge of food habits of *A. andinus*, a species reported having insectivorous and omnivorous food habits. Our record also adds *A. andinus* as a predator on *L. bellii*, even though we believe predation by this mouse is probably quite rare.

ENRIQUE SANTOYO-BRITO (e-mail: enrique.s.brito@okstate.edu) and **STANLEY FOX**, Department of Zoology, 501 LSW, Oklahoma State University, Stillwater, Oklahoma 74078, USA (e-mail: stanley.fox@okstate.edu); **HERMAN NÚÑEZ**, Museo Nacional de Historia Natural de Chile, Santiago, Chile (e-mail: hnunez@mnhn.cl).

At 1125 h on 21 August 2010, at Nuevo Centro, La Huacana, Michoacán, México (18.44071°N, 102.00435°W, datum WGS 84; 205 m elev.), I observed at 10 m distance an adult Harris’ Hawk...